Abstrak
Sistem penilaian berdasarkan suara tepuk tangan sering digunakan dalam acara perlombaan di Indonesia. Namun, penentuan pemenang dengan cara konvensional cenderung subjektif. Penelitian ini mengembangkan sistem penilaian otomatis berbasis komputer untuk menghitung jumlah orang bertepuk tangan dan menentukan pemenang dari perlombaan berdasarkan tepuk tangan. Penelitian ini membandingkan dua metode yang dapat diterapkan yaitu metode berbasis frekuensi dan metode berbasis amplitudo. Metode yang berbasis frekuensi mengimplementasikan Mel Frequency Cepstral Coefficient (MFCC) sebagai pengekstraksi ciri dan codebook sebagai pengenal pola. Hasil yang diperoleh merupakan suatu model berupa kelas-kelas yang diklasterkan oleh K-Means clustering. Parameter penting dalam metode ini adalah jumlah koefisien cepstral, overlap, time frame, dan jumlah klaster. Beberapa pengujian dilakukan untuk menemukan parameter optimum dengan nilai akurasi tertinggi. Metode kedua merupakan metode berbasis amplitudo yang dilakukan dengan menghitung jumlah sampel sinyal yang memiliki nilai amplitudo di atas nilai-nilai ambang (thresholds) tertentu yang menghasilkan akurasi maksimum. Hasil penelitian menunjukkan bahwa akurasi sistem berbasis frekuensi untuk tepuk tangan periodik adalah 83.3% dan untuk tepuk tangan acak ialah 50% sehingga akurasi sistem untuk tepuk tangan acak berbasis threshold yang lebih sederhana ialah ... Dengan demikian, metode berbasis amplitudo baik digunakan.
Kata kunci: Codebook, K-means, Mel Frequency Cepstral Coefficients (MFCC), Pengenalan Suara, Threshold
Pendahuluan
Sistem penilaian berdasarkan suara tepuk tangan sering digunakan dalam acara perlombaan di Indonesia. Pemenang ditentukan berdasarkan suara tepuk tangan terbanyak dari para penontonnya, namun pembawa acara, juri, atau siapapun yang menentukan pemenang berdasarkan tepuk tangan cenderung subjektif.
Peneliti: PUSPITA KARTIKA SARI
Untuk lebih lengkapnya silahkan download di link berikut:
Post a Comment
Post a Comment