Abstrak
Email spam telah menjadi masalah utama bagi pengguna dan penyedia jasa Internet. Pendekatan heuristic telah dilakukan untuk menyaring spam seperti black-listing atau rule-based filtering, namun hasilnya kurang memuaskan sehingga pendekatan berbasis konten (content-based filtering) menggunakan pengklasifikasi naïve Bayes lebih banyak digunakan saat ini. Penelitian ini bertujuan membandingkan pengklasifikasi naïve Bayes multinomial yang menggunakan atribut boolean dengan versi Graham, dan juga membandingkan kinerja dari dua metode untuk data latih, yaitu train-everything (TEFT) dan train-on-error (TOE). Hasil evaluasi menunjukkan bahwa naïve Bayes multinomial memiliki kinerja lebih baik dibanding versi Graham. Di samping itu, metode data latih menggunakan TEFT dapat meningkatkan akurasi model klasifikasi dibanding metode TOE.
Kata kunci: filter spam, naïve Bayes, metode training
Pendahuluan
Pemanfaatan teknologi jaringan Internet yang semakin meningkat intensitasnya dewasa ini berdampak besar pada metode pengiriman surat. Jalur fisik yang semula menjadi pilihan semakin ditinggalkan dan digantikan oleh jalur pengiriman elektronik dalam bentuk electronic mail atau biasa disebut dengan email. Berbagai macam keunggulan yang dimiliki oleh email ternyata banyak disalahgunakan untuk mengirimkan pesan berbau komersial secara massal.
Peneliti: Julio Adi Santoso
Untuk lebih lengkapnya silahkan download di link berikut:
Post a Comment
Post a Comment