Berikut ini akan saya berikan contoh pergitungan decision tree menggunakan algoritma C45 yang saya dapat dari berbagai sumber, sebagai referensi anda.Baik langsung saja berikut pejelasannya
Untuk menentukan bermain tenis atau tidak, kriteria yang diperlukan meliputi:
-Cuaca
-Angin
-Kelembaban
-Temperatur udara
Salah satu atribut merupakan data solusi per item data yang disebut target atribut -> misalnya atribut “play” degan nilai “main” atau “tidak main”
Atribut memiliki nilai-nilai yang dinamakan “instance”
Misalkan atribut “Cuaca” memiliki instance -> cerah, berawan, dan hujan.
Berdasakan tabel diatas akan dibuat tabel keputusan untuk menentukan main tenis atau tidak dengan melihat keadaan Outlook (cuaca), Temperatur, Humidity (kelembaban), dan windy (keadaan angin).
Algoritma secara umum:
-Pilih atribut sebagai akar
-Buat cabang untuk tiap2 nilai
-Bagi kasus dalam cabang
-Ulangi proses utk setiap cabang sampai semua kasus pada cabang memiliki kelas yang sama
Memilih atribut berdasarkan nilai “gain” tertinggi dari atribut-atribut yang ada.
Baca juga Jasa Bimbingan Skripsi Teknik Informatika
Perhitungan Gain
Baca juga Jasa Bimbingan Skripsi Teknik Informatika
Perhitungan Gain
Keterangan:
- S : himpunan
- A : atribut
- n : jumlah partisi atribut A
- | Si | : jumlah kasus pada partisi ke-i
- | S | : jumlah kasus dalam S
Menghitung Nilai Entropy
Keterangan:
S : himpunan kasus
A : fitur
n : jumlah partisi S
pi : proporsi dari Si terhadap S
Hasil perhitungan (Langkah 2)
Hasil perhitungan (Langkah 3)
- S : himpunan
- A : atribut
- n : jumlah partisi atribut A
- | Si | : jumlah kasus pada partisi ke-i
- | S | : jumlah kasus dalam S
Menghitung Nilai Entropy
Keterangan:
S : himpunan kasus
A : fitur
n : jumlah partisi S
pi : proporsi dari Si terhadap S
Perincian algoritma ( langkah 1)
- Menghitung jumlah kasus seluruhnya, jumlah berkeputusan “Yes” maupun “No”.
- Menghitung Entropy dari semua kasus yg terbagi berdasarkan atribut “Outlook”, “Temperature”,“Humidity”, “Windy”.
- Lakukan penghitungan Gain utk setiap atributnya
Perhitungan
Perhitungan Total Entropy
Menghitung gain pada baris Outlook
Lakukan Hitung Gain untuk temperature, humidity dan windy
Sepert yg terlihat pd tabel, diperoleh bhw atribut dgn Gain tertinggi adalah Humidity -> 0,37
Maka Humidity menjadi node akar
Humidity memiliki dua nilai yaitu “High” dan “Normal”
Humidity -> “Normal” sdh mengklasifikasikan kasus menjadi 1 yaitu keputusannya “yes”
Untuk humidity -> “High” msh perlu dilakukan perhitungn lagi (karena masih terdapat “yes” dan “no”)
Pohon Keputusan Node 1
Perincian Algoritma (Langkah 2)
Hasil perhitungan (Langkah 2)
Hasil perhitungan (Langkah 2)
Didapat Gain tertinggi -> outlook -> 0,69
Maka “Outlook” menjadi node cabang dari atribut humidity yg bernilai “High”
Berdasarkan atribut “Outlook” terdpt 3 nilai
Cloudy
Rainy
Sunny
Krn “Cloudy” pasti bernilai “Yes” dan “Sunny” pasti bernilai “No”, maka tdk perlu dilakukan perhitungan lagi
Sedangkan “Rainy” bernilai “yes” dan “No”, maka masih perlu dilakukan perhitungan lagi
Pohon keputusan node 1.1
Perincian algoritma (Langkah 3)
Hasil perhitungan (Langkah 3)
Hasil perhitungan (Langkah 3)
Didapat Gain tertinggi -> Windy -> 1
Maka “Windy” menjadi node cabang dari atribut humidity yg bernilai “High” dan outlook yg bernilai “Rainy”
Berdasarkan atribut “Windy” terdpt 2 nilai
True
False
Karena “True” sdh terklasifikasi pasti bernilai “No” dan “False” pasti bernilai “Yes”, maka tidak perlu dilakukan perhitungan lagi
Pohon keputusan node 1.1.2
Hasil perhitungan (Langkah 3)
Berdasarkan node 1.1.2, maka:
“Semua kasus sudah masuk dapat kelas”
Sehingga pohon keputusan diatas merupakan pohon keputusan terakhir yang terbentuk
Seperti yang telah diketahui macam-macam Algoritma Decison tree ada 3 yaitu :
- Algoritma C4.5
- ID3 -> merupakan pengembangan C4.5
- CART
Kata kunci : Decision Tree dengan Algoritma C45, algoritma C45, Skipsi Teknik Informatika, Contoh Skripsi, Algoritma, skripsi
makasih info sangat bermanfaat disini saya menemukan ilmu yang tidak saya pelajari di kampus saya makasih admin
ReplyDeleteini ada rekomendasi untuk contoh program decision tree
https://resepit.com/decision-tree/
Moga bermanfaat
maaf gan, untuk tabel merah pertama, kolom Entropy & Gain cara ngitungnya gimana ya?? Saya masih belum paham. Mohon penjelasannya :) (h)
ReplyDeletemaaf gan, untuk tabel merah pertama, kolom Entropy & Gain cara ngitungnya gimana ya?? Saya masih belum paham. Mohon penjelasannya :) (h)
ReplyDeleteTerimakasih info nya gan
ReplyDeleteUpgrading spend and sway crosswise over channels Even now, in the period of treats and snap throughs, it's not in every case simple to enhance spending allotments. machine learning course
ReplyDeleteMas saya masih bingung dengan penjumlahan entropi total.
ReplyDeleteHalo kak, kalo nilai gain nya negatif gimana ya
ReplyDeleteJika mau membuat dataset apakah harus ada 14 data dengan 4 atribut ya kak?
ReplyDelete